Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 200
Filtrar
1.
Food Funct ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38618675

RESUMO

Punicic acid (PA), mainly found in pomegranate seed oil (PSO), has attracted increasing attention due to its potential to mitigate obesity. The regulation of intestinal microflora was identified as a crucial factor and an effective strategy to reverse obesity-related hyperlipidemia and non-alcoholic fatty liver disease (NAFLD). To assess the impact of PSO on hyperlipidemia related to obesity, we investigated the hepatic lipid status and gut microbiota regulation in mice over 13 weeks of feeding a high-fructose high-fat diet (HFHFD). Serum lipid markers, including TG, TC and LDL-C, were markedly reduced in hyperlipidemic mice. PSO supplementation reduced hepatic lipid accumulation and steatosis, inhibited the expression of pro-inflammatory mediators (including IL-6 and IL-1ß), and restored the normal levels of the anti-inflammatory cytokine IL-10. In addition, PSO also alleviated oxidative stress and increased T-AOC and SOD activities, as well as GSH levels, while reducing the MDA content in the liver of HFHFD-fed mice. The activation of TLR4/MyD88/NF-κB and TLR4/IL-22/STAT3 signaling pathways in the liver due to the HFHFD was also evidently inhibited by PSO. Furthermore, supplementation of PSO ameliorated the HFHFD-induced dysbiosis of intestinal microflora, resulting in a markedly increased proportion of Muribaculaceae, a decreased ratio of Blautia, and elevated levels of microbiota-derived short-chain fatty acids (SCFAs). Moreover, the expression of tight junction proteins correlated with intestinal barrier function was notably restored in the colon. The collected results indicate that PSO may be an effective nutraceutical ingredient for attenuating lipid metabolic disorders.

2.
Biochem Genet ; 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38430448

RESUMO

Globally, colorectal cancer (CRC) is one of the leading causes of health problems. More reliable molecular biomarkers for early diagnosis in CRC patients are needed. A crucial role for thyroid hormone receptor interacting protein 6 (TRIP6) is played in tumorigenesis and tumor growth. Our study aims to determine the diagnostic and prognostic roles of TRIP6 at CRC. TRIP6 gene expression levels were analyzed in this study from public databases. The relationship between TRIP6 expression and clinicopathological characteristics was explored by logistic regression analysis. Based on Kaplan-Meier (K-M) survival curves and receiver operating characteristic curves (ROC) analysis, the prognostic and diagnostic values of TRIP6 were determined. Protein-protein interaction (PPI) networks analysis were performed using the STRING database. A Spearman's correlation analysis applied for examining the correlation between TRIP6 expression, immune cell infiltration, and immune checkpoint genes. Moreover, colony formation assay and transwell assay were used to investigate the functions of TRIP6. TRIP6 was highly expressed in CRC cancer tissues and cells. K-M survival analysis indicated that a high expression of TRIP6 was associated with poor prognosis. TRIP6 expression was obviously associated with immune cell infiltration and immune checkpoint gene expression. For validation, the results of collected clinical CRC samples show that TRIP6 levels in CRC tumor tissue were higher than those of paired adjacent colorectal tissues. Additionally, in vitro experiments suggested that TRIP6 knockdown suppressed proliferation and migration in CRC cell line RKO. TRIP6 overexpression promoted the proliferation and migration of normal colon cell line NCM460. High TRIP6 expression is associated with poor prognosis in colorectal cancer and promotes tumor cell proliferation and migration which may be a potential diagnostic and prognostic biomarker and a promising therapeutic target for CRC, providing new insights into its role in CRC.

3.
Int Immunopharmacol ; 131: 111871, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38492339

RESUMO

Inflammatory bowel disease (IBD) is a recurrent chronic colitis disease with increasing incidence and prevalence year by year. The single efficacy and significant side effects of traditional IBD treatment drugs have promoted the flourishing development of new drugs. Inspired by many health benefits of carbon dots (CDs) based nanomedicine in biomedical applications, a metal-free carbon dots (CP-CDs) was synthesized from citric acid and polyethylene polyamine to treat colitis. Oxidative stress tests at the cellular and nematode levels demonstrated CP-CDs have good antioxidant effects, while the toxicity of CP-CDs to cells and nematodes is low. CP-CDs were further applied to dextran sodium sulfate (DSS)-induced colitis in mice models, and it was found that CP-CDs can reduce the disease activity index (DAI) score of colon tissue and restore the intestinal barrier. Further, the anti-colitis mechanisms of CP-CDs were explored, one of which is to regulate intestinal oxidative stress in inflammatory mice, further reducing the expression of inflammatory cytokines, and thus alleviating colitis. Notably, 16S rRNA sequence analysis showed that the abundance of beneficial bacteria (Ligilactobacillus and Enterorhabdus) in the intestinal tract increased, while that of harmful bacteria (unclassified_Clostridia_UCG_014) decreased after CP-CDs treatment, indicating that CP-CDs rebalancing the gut microbiota destroyed by DSS is another important mechanism. In short, these non-toxic carbon dots not only have the potential for multi-factor combined relief of colitis but also offer an alternative therapy medicine for patients suffering from IBD.


Assuntos
Colite , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Nematoides , Humanos , Animais , Camundongos , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , RNA Ribossômico 16S , Estresse Oxidativo , Carbono/uso terapêutico , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Sulfato de Dextrana , Colo , Camundongos Endogâmicos C57BL
4.
BMC Pulm Med ; 24(1): 137, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500104

RESUMO

BACKGROUND: Yanghe Pingchuan decoction (YPD) has been used for asthma treatment for many years in China. We sought to understand the mechanism of YPD, and find more potential targets for YPD-based treatment of asthma. METHODS: An ovalbumin-induced asthma model in rats was created. Staining (hematoxylin and eosin, Masson) was used to evaluate the treatment effect of YPD. RNA-sequencing was carried out to analyze global gene expression, and differentially expressed genes (DEGs) were identified. Analysis of the functional enrichment of genes was done using the Gene Ontology database (GO). Analysis of signaling-pathway enrichment of genes was done using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Real-time reverse transcription-quantitative polymerase chain reaction was undertaken to measure expression of DEGs. RESULTS: Pathology showed that YPD had an improvement effect on rats with asthma. RNA-sequencing showed that YPD led to upregulated and downregulated expression of many genes. The YPD-based control of asthma pathogenesis may be related to calcium ion (Ca2+) binding, inorganic cation transmembrane transporter activity, microtubule motor activity, and control of canonical signaling (e.g., peroxisome proliferator-activated receptor, calcium, cyclic adenosine monophosphate). Enrichment analyses suggested that asthma pathogenesis may be related to Ca2 + binding and contraction of vascular smooth muscle. A validation experiment showed that YPD could reduce the Ca2 + concentration by inhibiting the Angiopoietin-II (Ang-II)/Phospholipase (PLA)/calmodulin (CaM0 signaling axis. CONCLUSION: Control of asthma pathogenesis by YPD may be related to inhibition of the Ang-II/PLA/CaM signaling axis, reduction of the Ca2+ concentration, and relaxation of airway smooth muscle (ASM).


Assuntos
Asma , Cálcio , Medicamentos de Ervas Chinesas , Ratos , Animais , Cálcio/efeitos adversos , Asma/tratamento farmacológico , Asma/genética , Asma/metabolismo , RNA/efeitos adversos , Expressão Gênica , Poliésteres/efeitos adversos
5.
Biotechnol Lett ; 46(2): 223-233, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38310624

RESUMO

Bilirubin, a key active ingredient of bezoars with extensive clinical applications in China, is produced through a chemical process. However, this method suffers from inefficiency and adverse environmental impacts. To address this challenge, we present a novel and efficient approach for bilirubin production via whole-cell transformation. In this study, we employed Corynebacterium glutamicum ATCC13032 to express a ß-glucuronidase (StGUS), an enzyme from Staphylococcus sp. RLH1 that effectively hydrolyzes conjugated bilirubin to bilirubin. Following the optimization of the biotransformation conditions, a remarkable conversion rate of 79.7% in the generation of bilirubin was obtained at temperate 40 °C, pH 7.0, 1 mM Mg2+ and 6 mM antioxidant NaHSO3 after 12 h. These findings hold significant potential for establishing an industrially viable platform for large-scale bilirubin production.


Assuntos
Bilirrubina , Corynebacterium glutamicum , Glucuronidase/genética , Glucuronidase/metabolismo , Corynebacterium glutamicum/metabolismo , Staphylococcus , China
6.
Appl Microbiol Biotechnol ; 108(1): 178, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38276978

RESUMO

In this study, the effect of polyethylene glycol 8000 (PEG8000) stress on cellulase biosynthesis in Trichoderma reesei CICC2626 via calcium signaling was investigated, and a plausible mechanism by which intracellular Ca2+ regulates the transcription of cellulase genes was proposed. The results indicated that the total cellulase (filter paper-hydrolyzing activity [FPase]), endoglucanase (carboxymethyl cellulase activity [CMCase]), and ß-glucosidase activities of the strain were 1.3-, 1.2-, and 1.3-fold higher than those of the control (no PEG8000 addition) at a final concentration of 1.5% (w/v) PEG8000. Moreover, the transcriptional levels of cellulase genes, protein concentrations, and biomass increased. With the synergistic use of commercial cellulase and T. reesei CICC2626 cellulase to hydrolyze alkali-pretreated rice straw, the released reducing sugar concentration reached 372.7 mg/g, and the cellulose content (22.7%, 0.32 g) was significantly lower than the initial content (62.5%, 1.88 g). Transcriptome data showed that 12 lignocellulose degradation-related genes were significantly upregulated in the presence of 1.5% PEG8000. Furthermore, the addition of Ca2+ inhibitors and deletion of crz1 (calcineurin-responsive zinc finger 1-encoding gene, which is related to the calcium signaling pathway) demonstrated that calcium signaling plays a dominant role in PEG8000-induced cellulase genes overexpression. These results revealed a link between PEG8000 induction and calcium signaling transduction in T. reesei CICC2626. Moreover, this study also provides a novel inducer for enhanced cellulase production. KEY POINTS: • Cellulase biosynthesis in Trichoderma reesei could be enhanced by PEG8000 • PEG8000 could induce a cytosolic Ca2+ burst in Trichoderma reesei • The activated calcium signaling was involved in cellulase biosynthesis.


Assuntos
Celulase , Hypocreales , Polietilenoglicóis , Trichoderma , Celulase/metabolismo , Sinalização do Cálcio , Celulose/metabolismo , Trichoderma/genética , Trichoderma/metabolismo
7.
Appl Microbiol Biotechnol ; 108(1): 177, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38277012

RESUMO

In this study, the effects of inoculum ratio, substrate particle size and aeration rate on humic acid (HA) biosynthesis during aerobic composting of rice straw were investigated, respectively. The contents of total organic carbon, total nitrogen and HA, as well as lignocellulose degradation in the composting were evaluated, respectively. It is found that the maximal HA yield of 356.9 g kg-1 was obtained at an inoculum ratio of 20%, a substrate particle size of 0.83 mm and an aeration rate of 0.3 L·kg-1 DM min-1 in the process of composting. The changes of microbial communities and metabolic functions at different stages of the composting were also analyzed through high-throughput sequencing. The result demonstrates that Proteobacteria, Firmicutes, Bacteroidetes and Actinobacteria were the dominant phyla and their relative abundance significantly varied over time (p < 0.05), and Rhizobium, Phenylobacterium, Pseudoxanthomonas and Paenibacillus were positively related to HA content in the compost. Furthermore, the metabolic function profiles of bacterial community indicate that these functional genes in carbohydrate metabolism and amino acid metabolism were involved in lignocellulose biodegradation and HA biosynthesis. This work may be conducive to explore new regulation strategy to improve bioconversion efficiency of agricultural residues to applicable biofertilizers. KEY POINTS: • Temperature, pH, TOC, TN and C/N caused a great influence on humic acids synthesis • The succession of the microbial community during the composting were evaluated • The metabolisms of carbohydrate and amino acids were involved in HA synthesis.


Assuntos
Compostagem , Oryza , Substâncias Húmicas , Oryza/microbiologia , Esterco/microbiologia , Bactérias/genética , Solo
8.
Ann Med Surg (Lond) ; 86(1): 212-218, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38222706

RESUMO

Background: Bronchial asthma (BA) is a chronic inflammatory airway disease. Previous research has shown that Yanghe Pingchuan granules (YPG), among the granules formulated by the First Affiliated Hospital of the Anhui University of Chinese Medicine, exerts a precise therapeutic effect on BA. We previously showed that YPG improves airway inflammation in BA rats. Other studies have shown that the inhibitor of kappa-B kinase (IKK)/inhibitor of NF-κB (IκB)/nuclear factor kappa-B (NF-κB) signalling pathway plays a key role in inflammation mediation. Therefore, this study explored whether YPG could intervene in BA through the IKK/IκB/NF-κB signalling pathway. Methods: Ovalbumin-induced method was used to established BA rat model. After successful modelling, the authors used YPG to intervene the rats in BA rats. Hematoxylin-eosin (HE) staining was used to detect the bronchial pathological changes in BA rats, enzyme-linked immunosorbent assay (ELISA) was used to detect the changes of inflammatory factors (IL-1ß and IL-6) and oxidative stress indexes malondialdehyde (MDA), superoxide dismutase (SOD) and nitrogen monoxide (NO), Quantitative real-time polymerase chain reactionCR and western blot were used to detect the expression of IKK/IκB/NF-κB signalling pathway. Results: In BA model rats, YPG significantly improved the inflammatory response in bronchial tissues, reduced inflammatory factors IL-1ß and IL-6, alleviated oxidative stress, reduced MDA and NO, and increased SOD. Quantitative real-time polymerase chain reaction and western blot results showed that YPG could block the IKK/IκB/NF-κB signalling pathway. Conclusion: These findings showed that YPG had a definite therapeutic effect on BA, which may be related to blocking the IKK/IκB/NF-κB signalling pathway and improving inflammation and oxidative stress.

9.
J Gene Med ; 26(1): e3664, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38282143

RESUMO

BACKGROUND: The primary reason for tumor-related deaths worldwide is lung adenocarcinoma (LUAD). The oncogene IQ motif-containing GTPase activating protein 3 (IQGAP3) is crucial for contributing to tumor initiation and progression. However, the precise function and molecular mechanism of IQGAP3 in LUAD remain unknown. The present study aimed to investigate the expression, prognosis, mechanism and tumor immunity associated with IQGAP3 in LUAD. METHODS: The relationship between IQGAP3 and the poor prognosis of LUAD was analyzed using The Cancer Genome Atlas (TCGA) database. This analysis was further validated on lung cancer tissues and cell lines. The function of IQGAP3 was investigated by silencing it in LUAD cell lines. To predict microRNA (miRNA) and long non-coding RNA associated with IQGAP3, the starBase database was utilized, and the predictions were verified by enhancing the function of miRNA. Finally, the relationship between IQGAP3 and tumor immunity was evaluated using Spearman's correlation analysis. RESULTS: TCGA database revealed that higher levels of IQGAP3 were associated with advanced tumor stage, N stage and poor prognosis in LUAD patients. To confirm that, we conducted experiments on lung cancer tissues and cell lines and found that silencing IQGAP3 significantly inhibited tumor cell proliferation and migration. The expression of IQGAP3 showed a negative correlation with has-miR-101-3p and has-miR-135a-5p, whereas it showed a positive correlation with GSEC, AC005034.3 and TYMSOS. Furthermore, the introduction of miRNA-mimics into lung cancer cell resulted in a significant inhibition of cancer cell growth and migration. Following that, the level of IQGAP3 showed a positive correlation with the infiltration of immune cells in tumors. CONCLUSIONS: These results reveal that IQGAP3 significantly promotes LUAD progression and could serve as a prognostic biomarker for LUAD. Furthermore, IQGAP3 is most likely regulated by the GSEC/TYMSOS-hsa-miR-101-3p axis and the AC005034.3-hsa-miR-135a-5p axis in LUAD.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , MicroRNAs , Humanos , Adenocarcinoma de Pulmão/genética , MicroRNAs/genética , Neoplasias Pulmonares/genética , Linhagem Celular , Proliferação de Células/genética , Transformação Celular Neoplásica , Regulação Neoplásica da Expressão Gênica , Proteínas Ativadoras de GTPase
10.
J Proteomics ; 293: 105065, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38158016

RESUMO

The 12th day of gestation is a critical period for embryo loss and the beginning of imminent implantation in sows. Data independent acquisition (DIA) technology is one of the high-throughput, high-resolution and reproducible proteomics technologies for large-scale digital qualitative and quantitative research. The aim of this study was to identify and characterize the protein abundance landscape of Yorkshire pig endometrium on the 12th day of pregnancy (P12) and estrous cycle (C12) using DIA proteomics. A total of 1251 differentially abundant proteins (DAPs) were identified, of which 882 were up-regulated and 369 were down-regulated at P12. Functional enrichment analysis showed that the identified proteins were related to metabolism, biosynthesis and signaling pathways. Three proteins were selected for Western blot (WB) validation and the results were consistent with the DIA data. Further combined with transcriptome data, fibrinogen like 2 (FGL2) and S100 calcium binding protein A8 (S100A8) were verified to be highly abundant in the P12 endometrial epithelium. In summary, there were significantly different abundance of proteome profiles in C12 and P12 endometrium, suggesting that DAPs are associated with changes in endometrial receptivity, which laid the foundation for further research on related regulatory mechanisms. SIGNIFICANCE: The 12th day of gestation is an important point in the peri-implantation period of pigs, when the endometrium presents a receptive state under the stimulation of estrogen. DIA proteomics technology is an emerging protein identification technology in recent years, which can obtain protein information through comprehensive and unbiased scanning. In this study, DIA technology was used to characterize endometrial proteins in pigs during the peri-implantation period. The results showed that higher protein abundance was detected using the DIA technique, and some of these DAPs may be involved in regulating embryo implantation. This study will help to better reveal the related proteins involved in embryo implantation, and lay a foundation for further research on the mechanism of endometrial regulation of embryo implantation. SIGNIFICANCE OF THE STUDY: The 12th day of gestation is an important point in the peri-implantation period of pigs, when the endometrium presents a receptive state under the stimulation of estrogen. DIA proteomics technology is an emerging protein identification technology in recent years, which can obtain protein information through comprehensive and unbiased scanning. In this study, DIA technology was used to characterize endometrial proteins in pigs during the peri-implantation period. The results showed that higher protein abundance was detected using the DIA technique, and some of these DAPs may be involved in regulating embryo implantation. This study will help to better reveal the related proteins involved in embryo implantation, and lay a foundation for further research on the mechanism of endometrial regulation of embryo implantation.


Assuntos
Implantação do Embrião , Proteômica , Gravidez , Animais , Suínos , Feminino , Proteômica/métodos , Implantação do Embrião/fisiologia , Endométrio/metabolismo , Ciclo Estral , Estrogênios/metabolismo
11.
Talanta ; 270: 125555, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38134816

RESUMO

Quantitative determination of pesticides in fruits and vegetables is essential for human healths. Herein, a new dual-emission carbon dots with high fluorescence stability at a pH range of 4-10 and a temperature range of 0-60 °C was synthesized. And a novel ratiometric fluorescence probe was proposed to detect thiabendazole (TBZ) residue with a wide linear range (0-1000 µM) and low detection limit (0.15 µM). The emission at 512 nm exhibited a special "turn-off" fluorescence sensing of TBZ due to internal filter effect, while that at 361 nm barely changed and worked as reference. Furthermore, the ratiometric fluorescence strategy was successfully applied for determining TBZ in fruits with good recoveries (96.73%-111.17 %, 93.29%-120.78 % and 96.28%-100.57 %, respectively). Notably, the constructed ratiometric fluorescence probe had comparable accuracy to HPLC in detecting unknown concentrations of TBZ in pear juice, demonstrating dual-emission carbon dots possess wide and promising applicability for fluorescence sensing pesticides in the future.


Assuntos
Praguicidas , Pontos Quânticos , Humanos , Fluorescência , Pontos Quânticos/química , Tiabendazol , Carbono/química , Frutas , Corantes Fluorescentes/química , Limite de Detecção
12.
Food Funct ; 15(2): 747-765, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38117188

RESUMO

Bacillus probiotics exhibit considerable economic potential owing to their heightened resilience to external stressors and relatively lower costs related to production and preservation. Although Bacillus paralicheniformis has been acknowledged as a plant-promoting bacterium for a long time, understanding its potential as a probiotic is still in its nascent stages. In this study, the safety and probiotic characteristics of a strain of HMPM220325, isolated from artisanal fruit dairy products, were examined through whole-genome sequencing and phenotypic analysis. The whole genome of HMPM220325 was analyzed for antimicrobial resistance genes, pathogenicity factors, and genes associated with probiotic traits including stress resistance, spore formation, gut adhesion, competitive exclusion of pathogens, bacteriocin expression, and carbohydrate metabolism related to prebiotic utilization. Also, wet lab experiments were conducted for the characterization of probiotics. The identification of the organism as B. paralicheniformis was verified. Its safety was assessed through in silico analysis, the haemolytic activity test, and the acute oral toxicity test. B. paralicheniformis HMPM220325 demonstrated its ability to survive in the pH range of 4-10 and bile salt concentrations of 0-0.9% (w/v), tolerate temperatures between 20 and 60 °C, and exhibit a robust antioxidant capacity. Moreover, B. paralicheniformis HMPM220325 demonstrated a moderate level of hydrophobicity, had the ability to form biofilms, achieved a self-aggregation rate of 51.77 ± 1.01% within 6 hours, and successfully colonized the mouse intestine for a duration of up to 17 days. Additionally, the genome of B. paralicheniformis HMPM220325 contains three gene clusters associated with the biosynthesis of bacteriocins and exhibits co-aggregation with Staphylococcus aureus, Pseudomonas aeruginosa, and Salmonella enterica serovar Typhimurium. The findings of the genomic analysis align with those obtained from the experimental investigation, thereby substantiating the potential of B. paralicheniformis HMPM220325 as a probiotic suitable for incorporation in dairy functional foods and feed applications.


Assuntos
Bacillus , Bacteriocinas , Probióticos , Animais , Camundongos , Frutas/metabolismo , Bacillus/genética , Bacillus/metabolismo , Bacteriocinas/genética , Bacteriocinas/metabolismo , Laticínios , Probióticos/química
13.
World J Microbiol Biotechnol ; 40(2): 46, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38114752

RESUMO

The objective of this paper is to explore the function of the AOL-s00215g415 (Aog415) gene, which encodes for the synthesis of siderophore in the nematode trapping fungal model strain A. oligospora, in order to understand the relationship between siderophore biosynthesis and nematode trapping activity. After a through sequence analysis, it was determined that Aog415 is a siderophore-synthesizing NRPS. The product of this gene was then identified to be the hydroxamate siderophore desferriferrichrome, using mass spectrometry analysis. When compared to the WT strains, the Aog415 knockout strain exhibited a 60% decrease in siderophore content in fermentation broth. Additionally, the number of predatory rings of decreased by 23.21%, while the spore yield increased by 37.34%. The deletion of Aog415 did not affect the growth of A. oligospora in diverse nutrient medium. Lipid metabolism-related pathways were the primary targets of Aog415 disruption as revealed by the metabolomic analysis. In comparison to the WT, a significant reduction in the levels of glycerophospholipids, and glycolipids was observed in the mutation. The metabolic alteration in fatty acyls and amino acid-like molecules were significantly disrupted. The knockout of Aog415 impaired the biosynthesis of the hydroxamate siderophore desferriferrichrome, remodeled the flow of fatty acid in A. oligospora, and mainly reprogrammed the membrane lipid metabolism in cells. Desferriferrichrome, a hydroxamate siderophore affects the growth, metabolism and nematode trapping ability of A. oligospora by regulating iron intake and cell membrane homeostasis. Our study uncovered the significant contribution of siderophores to the growth and nematode trapping ability and constructed the relationship among siderophores biosynthesis, lipid metabolism and nematode trapping activity of A. oligospora, which provides a new insight for the development of nematode biocontrol agents based on nematode trapping fungi.


Assuntos
Nematoides , Animais , Nematoides/microbiologia , Metaboloma , Fenótipo , Sideróforos , Lipídeos
14.
Heliyon ; 9(11): e21936, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027735

RESUMO

Background: Yanghe Pingchuan Granule (YPG) is a patented Chinese medicine developed independently by the Anhui Provincial Hospital of Traditional Chinese Medicine. For many years, it has been used for the treatment of asthma with remarkable clinical effects. However, the composition of YPG is complex, and its potential active ingredients and mechanism of action for the treatment of asthma are unknown. Materials and methods: In this study, we investigated the potential mechanism of action of YPG in the treatment of asthma through a combination of bioinformatics and in vivo experimental validation. We searched for active compounds in YPG and asthma targets from multiple databases and obtained common targets. Subsequently, a protein-protein interaction (PPI) network for compound disease was constructed using the protein interaction database for Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Finally, hematoxylin and eosin (H&E) staining, Masson staining, enzyme-linked immunosorbent assay (ELISA) analysis, immunofluorescence (IF) experiments, and Western blot (WB) experiments were performed to verify the possible mechanism of action of YPG for asthma treatment. Results: We obtained 72 active ingredients and 318 drug target genes that overlap with asthma. Serine/threonine-protein kinase (AKT1), tumor protein p53 (TP53), tumor necrosis factor (TNF), interleukin (IL)-6, IL-1ß, vascular endothelial growth factor-A (VEGFA), prostaglandin-endoperoxide synthase 2 (PTGS2), caspase-3 (CASP3), mitogen-activated protein kinase 3 (MAPK3) and epidermal growth factor receptor (EGFR) were the most relevant genes in the PPI network. KEGG analysis showed a high number of genes enriched for the nuclear factor kappa-B (NF-κB) signaling pathway. Animal experiments confirmed that YPG reduced inflammatory cell infiltration and down-regulated the expression of ovalbumin-induced inflammatory factors. Furthermore, YPG treatment decreased the protein expression of NFĸB1, nuclear factor kappa B kinase subunit beta (IKBKB), vascular endothelial growth factor (VEGF), and vascular endothelial growth factor receptor 2 (VEGFR2) in lung tissue. Conclusion: YPG has a positive effect on asthma by interfering with multiple targets. Furthermore, YPG may significantly inhibit the follicle-induced inflammatory response through the NF-ĸB signaling pathway.

15.
Biochem Genet ; 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37856039

RESUMO

Alzheimer's disease (AD) is an extremely prevalent neurodegenerative disease. Long noncoding RNAs (lncRNAs) play pivotal roles in the regulation of AD. However, the function of most lncRNAs in AD remains to be elucidated. In this study, the effects of lncRNA ENST00000440246.1 on the biological characteristics of AD were explored. Differentially expressed lncRNAs in AD were identified through bioinformatics analysis and peripheral blood from thirty AD patients was collected to verify the expression of these lncRNAs by quantitative real-time polymerase chain reaction (RT-qPCR). The correlations between lncRNAs and the Mini-Mental State Examination (MMSE) or the Montreal Cognitive Assessment (MoCA) were assessed by Pearson's correlation analysis. Immunofluorescence (IF), Cell Counting Kit-8 (CCK-8) and flow cytometry assays were conducted to evaluate the biological effect of ENST00000440246.1 and protein phosphatase 2 A (PP2A) in SK-N-SH cells. Gene expression at the protein and mRNA levels was analyzed by Western blotting and RT-qPCR. The interaction between PP2A and ENST00000440246.1 was confirmed by IntaRNA and RNA pulldown assays. ENST00000440246.1 was upregulated and significantly negatively correlated with the MMSE and MoCA scores and the overexpression of ENST00000440246.1 inhibited cell proliferation and facilitated apoptosis and Aß expression in SK-N-SH cells. Mechanistically, ENST00000440246.1 targeted PP2A and regulated AD-related gene expression. The silencing of ENST00000440246.1 had the opposite effect. Furthermore, PP2A overexpression reversed the influence of ENST00000440246.1 overexpression in SK-N-SH cells. In conclusion, ENST00000440246.1 could promote AD progression by targeting PP2A, which indicates that ENST00000440246.1 has the potential to be a diagnostic target in AD.

16.
Food Funct ; 14(18): 8646-8660, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37672003

RESUMO

Latilactobacillus curvatus is a potential probiotic that possesses beneficial health properties and fermentation traits; however, the extent of understanding of the antioxidant activities of L. curvatus is limited. This study investigates the antioxidant activities of a new L. curvatus FFZZH5L strain. The strain exhibits broad tolerance to acids, bases and salts and demonstrated good adaption to the gastrointestinal environment, with a survival rate of 45% after 24 h of treatment in artificial gastrointestinal juice. Moreover, L. curvatus FFZZH5L exhibits inhibitory effects on Staphylococcus aureus, with a self-aggregation rate of 34.8% and a co-aggregation rate of 82.2%. In vitro, the DPPH radical scavenging ability and GSH-px enzyme activity of L. curvatus FFZZH5L reach 64.27% and 15.95 U mL-1, respectively. Treatment of C. elegans with L. curvatus FFZZH5L in vivo significantly extended the organism's lifespan. Furthermore, the activity of SOD, GSH-px and T-AOC was increased by 33.6%, 43.4% and 58.3%, respectively. Feeding C. elegans with L. curvatus FFZZH5L decreased the MDA, lipofuscin and ROS levels by 9%-36.4%. L. curvatus FFZZH5L effectively protected C. elegans against juglone-induced oxidative stress damage and led to a significant increase in the organism's survival under heat stress. The RT-qPCR analysis suggests that feeding C. elegans with L. curvatus FFZZH5L upregulates the expression levels of antioxidant-related genes including glutathione S-transferase 4 (gst-4), gst-1, gst-10, sod-3, sod-5, and sod-10 in C. elegans. Our investigation confirms the probiotic and antioxidant properties of L. curvatus, indicating its potential application in functional foods and the pharmaceutical industry.


Assuntos
Antioxidantes , Vigna , Animais , Antioxidantes/farmacologia , Caenorhabditis elegans/genética , Glutationa Transferase/genética , Alimento Funcional , Lactobacillus , Superóxido Dismutase
17.
Biomed Mater ; 18(6)2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37722396

RESUMO

Antibiotics play an important role in the treatment of diseases, but bacterial resistance caused by their widespread and unreasonable use has become an urgent problem in clinical treatment. With the rapid advancement of nanoscience and nanotechnology, the development of nanomedicine has been transformed into a new approach to the problem of bacterial resistance. As a new type of carbon-based nanomaterial, carbon dots (CDs) have attracted the interest of antibacterial researchers due to their ease of preparation, amphiphilicity, facile surface functionalization, and excellent optical properties, among other properties. This article reviewed the synthesis methods and properties of various CDs and their composites in order to highlight the advancements in the field of CDs-based antibacterial agents. Then we focused on the relationship between the principal properties of CDs and the antibacterial mechanism, including the following: (1) the physical damage caused by the small size, amphiphilicity, and surface charge of CDs. (2) Photogenerated electron transfer characteristics of CDs that produce reactive oxygen species (ROS) in themselves or in other compounds. The ability of ROS to oxidize can lead to the lipid peroxidation of cell membranes, as well as damage proteins and DNA. (3) The nano-enzyme properties of CDs can catalyze reactions that generate ROS. (4) Synergistic antibacterial effect of CDs and antibiotics or other nanocomposites. Finally, we look forward to the challenges that CDs-based nanocomposites face in practical antibacterial applications and propose corresponding solutions to further expand the application potential of nanomaterials in the treatment of infectious diseases, particularly drug-resistant bacterial infections.


Assuntos
Antibacterianos , Nanocompostos , Espécies Reativas de Oxigênio , Peroxidação de Lipídeos , Carbono
18.
Anal Chim Acta ; 1276: 341636, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37573115

RESUMO

Cancer-derived small extracellular vesicles (csEVs) are crucial liquid biopsy indicators that reflect the presence and progression of many malignancies. However, reliable discrimination of csEVs remains a great challenge owing to the interference from normal sEVs (nsEVs) and low abundance in the early stages of cancer. In this work, we developed a Two-Elements Selectively Triggered csEVs Recognization (TESTER) strategy for selective identification of csEVs from the complex clinical body fluid samples. This method was based on the MNAzyme-controlled synchronous recognition to EpCAM and CD63 proteins on the membrane of csEVs. Efficient recognition to csEVs via EpCAM aptamer and CD63 aptamer prompted the release of Partzyme A and Partzyme B probes to induce a MNAzyme structure formation, resulting in the cyclic cleavage of substrate chain to produce cascade fluorescence signal amplification. The detection threshold of the developed TESTER approach for csEVs in complicated biological samples was 72 particles µL-1, accomplishing the highly sensitive and selective quantification of csEVs. At the same time, we successfully constructed a new platform for bimolecular simultaneous recognition, which provides a good idea for the construction of bimolecular-activated detection switch in the future.

19.
Funct Integr Genomics ; 23(3): 267, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37548859

RESUMO

N4-acetylcytidine (ac4C), a significant modified nucleoside, participates in the development of many diseases. Messenger RNAs (mRNAs) contain most of the information of the genome and are the molecules that transmit information from genes to proteins. Alzheimer's disease (AD) is a progressive neurodegenerative disease in which fibrillar amyloid plaques are present. However, it remains unknown how mRNA ac4C modification affects the development of AD. In the current study, ac4C-modified mRNAs were comprehensively analyzed in AD mice by ac4C-RIP-seq and RNA-seq. Next, a protein-protein interaction (PPI) network was constructed to examine the relationships between the genes with differential ac4C modification levels and their RNA expression levels. The differentially expressed genes (DEGs) acquired above were subjected to Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis to further analyze the molecular mechanisms in AD. In total, 3312 significant ac4C peaks were found on 2512 mRNAs, 1241 of which were hyperacetylated and 1271 of which were hypoacetylated. In addition, 956 mRNAs with differential expression were found, including 520 upregulated mRNAs and 436 downregulated mRNAs. Overall, 134 mRNAs with simultaneous changes at the ac4C levels as well as RNA expression levels were identified via joint analysis. Then, through PPI network construction and functional enrichment analysis, 37 key mRNAs were screened, which were predominantly enriched in GABAergic synapses and the PI3K/AKT signaling pathway. The significant difference in the abundance of mRNA ac4C modification indicates that this modification is associated with AD progression, which may provide insight for more investigations of the potential mechanisms.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Camundongos , Animais , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Camundongos Transgênicos , RNA Mensageiro/genética , Fosfatidilinositol 3-Quinases/genética , Córtex Cerebral/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala
20.
BMC Genomics ; 24(1): 412, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37488487

RESUMO

BACKGROUND: One of the most critical periods for the loss of pig embryos is the 12th day of gestation when implantation begins. Recent studies have shown that non-coding RNAs (ncRNAs) play important regulatory roles during pregnancy. Circular RNAs (circRNAs) are a kind of ubiquitously expressed ncRNAs that can directly regulate the binding proteins or regulate the expression of target genes by adsorbing micro RNAs (miRNA). RESULTS: We used the Illumina Novaseq6,000 technology to analyze the circRNA expression profile in the endometrium of three Erhualian (EH12) and three Yorkshire (YK12) pigs on day 12 of gestation. Overall, a total of 22,108 circRNAs were identified. Of these, 4051 circRNAs were specific to EH12 and 5889 circRNAs were specific to YK12, indicating a high level of breed specificity. Further analysis showed that there were 641 significant differentially expressed circRNAs (SDEcircRNAs) in EH12 compared with YK12 (FDR < 0.05). Functional enrichment of differential circRNA host genes revealed many pathways and genes associated with reproduction and regulation of embryo development. Network analysis of circRNA-miRNA interactions further supported the idea that circRNAs act as sponges for miRNAs to regulate gene expression. The prediction of differential circRNA binding proteins further explored the potential regulatory pathways of circRNAs. Analysis of SDEcircRNAs suggested a possible reason for the difference in embryo survival between the two breeds at the peri-implantation stage. CONCLUSIONS: Together, these data suggest that circRNAs are abundantly expressed in the endometrium during the peri-implantation period in pigs and are important regulators of related genes. The results of this study will help to further understand the differences in molecular pathways between the two breeds during the critical implantation period of pregnancy, and will help to provide insight into the molecular mechanisms that contribute to the establishment of pregnancy and embryo loss in pigs.


Assuntos
MicroRNAs , RNA Circular , Gravidez , Feminino , Suínos/genética , Animais , RNA Circular/genética , RNA Circular/metabolismo , Implantação do Embrião/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Endométrio/metabolismo , Reprodução , Redes Reguladoras de Genes , Perfilação da Expressão Gênica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...